立方根教学反思
作为一位到岗不久的教师,教学是我们的任务之一,借助教学反思可以快速提升我们的教学能力,教学反思应该怎么写呢?以下是小编精心整理的立方根教学反思,希望对大家有所帮助。
立方根教学反思1《立方根》八年级数学上学期《实数》第二节《立方根》第一课时的内容。立方根(1)的内容,是在学习了算术平方根、平方根的有关概念的基础上提出来的。本节从内容上看与上一节平方根的内容基本平行,主要研究立方根的概念和求法;从知识的展开顺序上看也基本相同,本节也是先从具体的计算出发归纳给出立方根的概念,然后讨论立方与开立方的互逆关系,研究立方根的特征。
在导入新课时,我采用了温故而知新法,让学生从以下几个问题入手:1.举例说明什么叫平方根,算术平方根?如何用符号表示数a(≥0)的平方根和算术平方根?2.正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?通过复习类比旧知,为新知的学习做好铺垫.
之后,我又创设了一个学生生活实际中常见的问题情境,“1.观察并思考:一个正方体的盒子边长是2厘米,你能求出它的体积吗”?
在此基础上,又设置了一个有挑战而学生又能解决的问题,“2.小明要制作一种容积为27cm3的正方体形状的包装箱,这种包装箱的边长应该是多少?你能帮帮他吗?”帮助朋友解决问题,同学的积极性被调动起来,同时也将学生的注意力朝着开立方运算向立方运算的思路引导,为进一步学习做好准备。在学生充分讨论的基础上教师给出解决问题的过程
在探究新知的环节,我在教学中主要采取类比学习的方法,首先让学生回忆平方根的概念及表示,并联系上面的问题,请学生归纳得出立方根的概念及表示。之后,一位学生也迫不及待地给出了立方根的概念即“一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根)。”“说得真棒。你能给大家举个例子说明一下吗?”如“23=6,2是6的立方根,33=9,3是9的立方根。”他用询问的眼光等待着我的回答“我们班的孩子就是不一样,她对立方根的概念理解的很到位,只是?”“老师,我知道她的问题出在什么地方,他把乘方等同于乘法”然后她说出了正确的答案。“看来这位同学很细心,大家为她加油。我们还能举出其他的例子吗?”同学们在下面嘀咕了几句,有的不声不响地计算了起来,稍顷学生开始举手抢着举例,课堂气氛被调动了起来。
立方根教学反思2本节课是立方根的第二节课,教学目标是:会用计算器求立方根,会用有理数估计(a不是立方数)的大小;理解开立方时,被开方数的小数点向右(或向左)每移动三位,它的立方根的小数点就向右(或向左)移动一位。前面两个目标比较容易,第三个目标学生掌握有一些困难。
我在问题1中设计了两个问题:估计在哪两个整数之间?用计算器计算:。估算是本节课的难点,可以提示学生回忆前面估算算术平方根的经验,通过这一探究活动,学生很快能够计算出3.684,培养了学生的估算能力,发展数感。同时,让学生再次体会无限不循环小数的存在,这节课的重点之一是探索被开方数扩大(缩小)与立方根扩大(缩小)的规律,通过问题4让学生独立完成探究后说出所发现的规律,学生的语言表达有点困难,在几个同学的补充后,基本能够说清楚规律,这一活动进一步熟悉用计算器求立方根,让学生体验数学规律发现的过程,并应用所发现的规律解决新的问题,培养了学生的语言表达能力、应用数学的意识和能力,也让学生体验到成功的喜悦,难点也因此解决了。达到了愉快学习的目的,激发了学生的学习兴趣。
立方根教学反思3本节课在教学方法上主要应用了创设情境--提出问题--建立模型--解决问题的思路,在实际教学中主要采用了精讲精练,学生自主学的教学方式。
在导入新课时,创设了一个学生生活中常常遇到的问题,让学生从实际问题出发,感受立方根在生活中有着广泛的应用,体会学习立方根的必要性,激发学生的学习兴趣,紧接着设计了问题,一个学生容易解决的问题,将学生的注意力从开立方运算向立方运算的思路引导,让学生对立方运算与开立方运算之间的互逆关系有初步的认识,为进一步探究新知做好准备。
本章前两节的内容,平方根和立方根之间在内容上有很多类似的地方,因此在教学中利用类比的方法,让学生通过类比旧知识学习新知识,教学中突出立方根和平方根的对比,分析他们之间的联系和区别,这样新旧知识联系起来,既有利于复习巩固平方根,又有利于立方根的理解和掌握,总结出来的“一二一”有助于学生生动的理解。通过独立思考,小组讨论,合作学习,学生能充分发挥他们的主观能动性,感受了立方运算和开立方的运算的互逆关系,并学会了从立方根和立方的逆运算中寻找解题的途径。
体现了现在教学中的精讲精练,学生的主体性得到了最好的呈现,老师在其过程中,起到引导和归纳角色,提出问题,让学生思考,老师不再讲,或者讲的很少,但要想当好这个“导演”老师确实要大量的时间备课,学生需要提前备课,课下工作量确实很大,但学生得到了表演,而且在班级里确实积极性得到了老师的肯定。
立方根教学反思4教材分析
《立方根》是义务教育课程标准实验教科书人教版版八年级(上)第十三章《实数》第二节.本节内容安排了1个学时完成.主要是通过对立方根与平方根的比较与归类,探索立方根的概念、计算和简单性质.因此,除了具体的知识技能(如知道一个数的立方根的意义,会用根号表示一个数的立方根,掌握立方根运算,掌握求一个数的立方根的方法和技巧)外,还需要让学生感受类比的思想方法,为今后的学习打下基础.
学情分析
在学习了平方根概念的基础上学习立方根的概念,学生比较容易接受,因此教学重点放在立方根具有唯一性(实数范围内)的讨论上.在学生对数的立方根概念及其唯一性有了一定理解的基础上,再提出数的立方根与数的平方根有什么区别,学生就容易解决问题.
教学目标
知识与技能目标
1.了解立方根的概念,初步学会用根号表示一个数的立方根.
2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.
3.了解立方根的性质----唯一性.
4.区分立方根与平方根的不同.
5.分清两个互为相反数的立方根的关系,即
5.渗透特殊---一般的数学思想方法.
过程与方法目标
1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.
2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想.
3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.
情感与态度目标:
1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系 ……此处隐藏5956个字……,完成了书中的课后练习和课后习题的1、2、3。
3、通过我在课堂上的观察、了解,通过学生做练习的表现和做题情况,通过班主任老师对坐在后面的后进生的观察反馈,知道学生对本节课的掌握还是不错的,达到了预定的教学目标。第二天我又问了一部分学生对《立方根(1)》这节课的学习感觉怎么样,都会吗?学生也都反映都会,听的挺清楚,觉得挺简单的。后面的后进生做的练习也挺不错的,写的都对,上课还回答了好几次问题,都说的挺棒的。
4、教学中我对例2的要求规定了三点:先读出下列各式,说明表示的意义,再求值。既锻炼了学生的语言,又强化了立方根的概念,最后完成求值,完成解答。从中也是给学生渗透一种学习方法,强化读题的重要性,要明确题意,才能求解。其实,这也是通过这段时间听指导老师陆春老师的课学到的,要感谢陆老师。
5、在讲明中a的取值范围时,我是在得到立方根的性质:一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零之后,让学生思考a的取值范围是什么,学生根据性质正数、负数和0都有立方根,自然而然的就可以得到a的取值范围,这样很自然,学生也很容易理解,有一种水到渠成的感觉。
三、不足之处
1、教学中我总是以我的意识为转移,课堂上按着我设计好的路线行驶,不能发挥学生学习的主动性,不能把学生放出去,总是攥在自己的手里,我觉得学生应该会的、容易的就少讲,觉得不好理解的就多讲,应该根据学生的实际情况来定,把学生放出去,掌控好他们,最后再收回来。
2、教学中我受自己的意识影响,缺少原理性的东西,缺少对定义的挖掘,有些地方没有抓住定义去进一步解释,缺少让学生思考,去想的时间过程,让学生知道本质的东西有利于学生理解(我总觉得学生都会了就不用过多解释了)。
3、教学中没有把平方根的相关知识列出来,所以对于立方根和平方根的类比就不显得充分、鲜明,我都是用语言来表述的,以后再上这节课时应该在黑板上写出来,会更好。
4、在教学中,对立方和开立方这一对互逆运算体现的不够,应该让学生进一步体会立方运算的结果是幂,开立方的结果是立方根。
四、疑惑的地方
教学中,我一直认为,学生都会的东西,就没有必要再去解释、说明、讲解,我觉得学生都会的地方还要去给解释,再讲,是在浪费时间,学生也不想再听(这是学生的意见)。
五、感受与思考:
1、学生预习习惯的养成,学习方法的培育,是培养自学能力的有效途径。
2、学生理解的效果,取决于教师根据学生的经验,作出的恰当的启发引导,以及学生参与学习过程的程度,包含主动性、过程性。
3、课堂难度和速度往往以中游学生为标尺,如何培养优生、帮助后进生?怎样去操作?特别是后进生人群数量庞大,而且又要面对考试评比,课堂应当怎么办?这是一个值得思考的问题
立方根教学反思141、在导入新课时,创设了一个学生生活实际中常常见到的热水器制造问题,让学生从实际问题情境中感受立方根的计算在生活中有着广泛的应用,体会学习立方根的必要性,激发学生的学习兴趣。
2、在例题中做了适当的处理,把课本上的一个习题作为导入新课的引例。这个实际问题中的数量关系的分析对于学生来说是不成问题的,但在解决问题的过程中引入了新问题,
“什么数的立方会等于31。84?”,这对学生来说是一个挑战,是一个学生只有“跳一跳”才能解决的问题,所以在此处铺设了一个台阶,再设置了一个学生容易解决的问题,将学生的注意力朝着开立方运算转化为立方运算的思路引导,让学生对立方运算与开立方运算之间的互逆关系有初步认识,为进一步探究新知做好准备。
3、本章前两节的内容“平方根”“立方根”在内容安排上也有很多类似的地方,因此在教学中利用类比方法,让学生通过类比旧知识学习新知识。教学中突出立方根与平方根的对比,分析它们之间的联系与区别,这样新旧知识联系起来,既有利于复习巩固平方根,又有利于立方根的理解和掌握。通过独立思考,小组讨论,合作交流,学生在“自主探索,合作交流”中充分发挥了他们的主观能动性,感受了立方运算与开立方运算之间的互逆关系,并学会了从立方根与立方是互逆运算中寻找解题途径。
4、在“深入探究”环节中: 完成课本第169页的探究题:
(1)对于 ,可以进一步追问学生,除了2以外是否有其他的数,它的立方也等于8呢?对于下面几个问题可以类似设问。
(2)思考正数、0、负数的立方根各有什么特点?并追问一个正数有几个立方根?一个负数有几个立方根?零的立方根是什么?(学生独立探究,再小组合作交流,给出立方根的性质)
(3)尝试用符号给出数a的立方根的表示方法。( 并问a可以取什么数?)
讨论数的立方根的特征,以填空的方式让学生计算正数,0,负数的立方根,寻找它们各自的特点,通过学生讨论交流等活动,归纳得出“正数的立方根是正数,0的立方根是0,负数的立方根是负数”的结论,这样就让学生通过探究活动经历了一个由特殊到一般的认识过程。教学中注意为学生提供一定的探索和合作交流的空间,在探究活动的过程中发展学生的思维能力,有效改变学生的学习方式。
5、在“拓展新知”环节中:
(1)学生独立研究课本第170页的探究题,并不妨请同学再举几个例子,探索从上面的计算结果中可以得到什么结论?
学生自己总结出两个互为相反数的立方根的关系: , 请同学再试试看 可以怎样解?
(2)小组学习:课本第173页的第9题,探索从上面计算结果中可以得到什么结论?
让学生探讨了一个数的立方根与它的相反数的立方根的关系,由此可以将求负数的立方根的问题转化为求正数的立方根的问题,让学生体会转化的思想。
立方根教学反思15上完《立方根》这一节课,我感觉成功之处在于发掘了一部分学生自学的潜力。
首先,我在上课之前先让学生做了复习题中的一道题,这道题有两个小题是关于平方根的运算,另两个小题是关于立方根的运算,我布置这道题的目的就是让自觉性强的学生自学的。上课时,我先讲这道作业题,果不其然,一部分学生说没有讲不会做。但是有一部分学生说他们自学了,我就表扬了这些学生并教育其他的学生初二应有自学的主动性。
其次,我就鼓励这部分自学的孩子上来和大家交流一下是如何自学的,他们就积极发言,其中有好几位同学讲的非常好!他们把立方根和平方根做比较来学习,我就让他们一个一个上去讲,其他同学提问,我控制课堂纪律同时纠正错误,这样课堂气氛活跃,学生主动参与,通过讨论交流,同学们都学会了,同学们总结出平方根和立方根的不同之处和相同之处,而且记忆深刻。
最后,我让学生上去做题,大家讨论解决,不会的问其他同学,黑板上做题的谁想上去讲就上去,最后效果很好。
我感觉这节课课堂气氛好,好的学生交流了自己学习的方法。从而启发了一部分差生,给他们教会了几种学习方法,而且刺激了一些学习主动性差的学生。从而把课堂交给了学生,让他们自主发挥,交流学习了这节课!