《运算定律》教学反思
身为一名人民教师,我们的任务之一就是教学,教学的心得体会可以总结在教学反思中,那么大家知道正规的教学反思怎么写吗?以下是小编整理的《运算定律》教学反思,欢迎大家分享。
《运算定律》教学反思1这节课主要讲的是综合运用加法结合律和加法交换律来解决实际问题。
这是我讲的第一节课,课前虽然做了很多准备,但是到了课堂上还是觉得不够充分,做教案和课件时所想到的情况远远不足以应对同学们课上所做的反应,比如一道题的解法,我准备三种,但是学生就可能想出十种、二十种,甚至更多。这就需要我在课上随时注意捕捉同学们的想法并理解和解决引导。虽然上课时我并不紧张,但是在应对同学们的种种想法解题思路时还是很局促。在讲到这节课的重点:计算李叔叔骑行总路程时,需要运用加法交换律和加法结合律,在这里我只讲到了原式之后的第一步交换两个加数的位置,第二步四个加数两两结合,最后得出结果比按步骤计算要简便,却没有想到同学们早已经把四个数按原来顺序相加的原式省略掉了,直接就是交换位置之后两两结合的式子了。直接导致这样讲定律的运用时就不知如何下手,很是被动。
在以后的课堂上,我一定会注意将课前的准备工作做的很细致才行,方方面面要想到。尤其注意跟随一些接受能力比较快的学生的方式用比较“方便”的方式来思考问题进而注意在课堂上应该怎样引导他们;还要注意不能忽视部分接受能力比较慢的同学,其实讲课大部分时间是要将给他们的,只要他们能接受,能听懂,那么这堂课就差不多达到目标了。
课堂刚开始同学们非常积极,可能因为本身加法结合律和加法交换律对于同学们来说都不是很困难,掌握的比较好,所以会很乐意来展示自己的学习成果;也可能大家对于我这个新来的老师比较好奇,课上想表现自己,所以还比较活跃。但是毕竟小孩子的注意力集中的时间有限,在课堂进行一段时间后就不再像开始那样气氛活跃了,仅仅是一部分平时一贯活跃的同学继续对我提出的问题积极回应做答,其他同学不再积极,甚至可能开小差了。对于集中同学们注意力这个问题,以后应该及时注意同学们的反应,适时调动他们的积极性,比如强调一下注意听讲,比一比谁坐的好,谁反应快哪一个小组领先等等方法来吸引同学注意力;也可以通过表扬做的好的同学来激励其他同学,多鼓励少批评。
经验还需慢慢摸索,逐步积累,每堂课都可能暴露出问题。我一定会在以后的课堂上注意这些问题,争取讲好每一节课,让每个学生都学会。
我觉得王春风第一次讲课还是不错的,能分析自己的不足和自己以后注意的问题,老师能不能根据学生的回答及时扑捉信息引导,甚至纠正或利用学生的错误来完成重难点的教学是非常重要的,对于一个实习老师开始不可能做得很好,这也是在情理之中的事情。
《运算定律》教学反思2一、调整教材顺序,促进有效教学
“乘法交换律”与“加法交换律”有着相似之处,都是交换数的位置进行运算,结果不变。“乘法的结合律”的教学可以与“加法的结合律”的教学安排在共一课时。学生通过具体事例的举例说明,得出a+b=b+a,再通过讨论得出“交换两个加数的位置,和不变,这叫加法交换律”。然后再安排教学乘法交换律,让学生通过举例说明,得出a×b=b×a,再通过对“加法交换律”概念的类比,推理出“交换两个因数的位置,积不变,这叫做乘法交换律”。再以同一课时或者前后课时,安排教学“加法结合律”与“乘法结合律”,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出“先把前两个数相加,或后两个数相加,和不变这叫做加法结合律”。教学乘法结合律时,再通过具体事例得出a×b×c=a×(b×c),再对“加法结合律”的概念的类比推理,得出“先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律”。
二、设计对比练习,促进有效教学
在新知识还没有完全掌握的情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的障碍中解脱出来。
学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。
如,463+82+18,463-82-18,463-82+18
9600×25×49600÷25÷49600÷25×4
三、进行逆向训练,促进有效教学
逆向运用
加法结合律:346+(54+189)=346+54+189
乘法结合律:8×(125×982)=8×125×982
乘法分配律:89×75+89×25=89×(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350÷(7×2)=350÷7÷2
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。
四、加强应用训练,促进有效教学
例1、求下列图形“L型”菜地的面积;
9厘米21厘米9厘米
例2、学校合唱团99个学生,每人一套报装185元,后来再加上同等价格的指挥服装一套。一共需要多少元?
例3、学校买了5副羽毛球拍,花了330元,还买了25筒羽毛球,每筒羽毛球12个,每筒羽毛球32元。又买了8个篮球。
1、学校一共买了多少个羽毛?
25×12
=25×4×3
2、买羽毛球一共花了多少元?
32×25
=8×4×25
3、每枝羽毛球拍多少元?
330÷5÷2
五、加强错例分析,促进有效教学
例1:25×32×125例2:32×125
=25×4+8×125=4×(8×125)
=4×8×4×125
例3:463-82+18例4:9600÷25×4例5:25×(400+4)
=463-(82+18)=9600÷(25×4)=25×400+4
《运算定律》教学反思3本节课我只设计了两个环节,(1)复习运算定律,(2)运用运算定律进行简便运算。在复习运算定律时,让学生通过具体的例子表示运算定律,为下一步的灵活运用奠定了基础。
简便计算应该是灵活、正确、合理地运用各种性质、定律等,使复杂的计算变得简单,从而大幅度地提高计算速度及正确率。开始时学生对简算还挺感兴趣,毕竟简算可以摆脱那些繁琐的四则混合运算了,也不用竖式计算了,可是随着简算类型的不断增多,学生开始对一些类型混淆了,特别是乘法结 ……此处隐藏8167个字……淆,故就不知道该题该用哪种简便计算。教学中,教师要加强类似题目间的对比。
例如:(25×20)×4与(25+20)×4的比较,前者是运用乘法结合律,后者是运用乘法分配律
例如:125×88和88×102的比较,前者是拆88,把88拆成8×11或88拆成80+8,后者是拆102,把 102拆成100+2。
总之,教学要根据教学内容的特点,为学生提供了多种探究方法,才能激发了学生的自主意识,才能唤醒了学生的求知欲望,才能促使学生对知识进行更新、深化、突破和超越。
《运算定律》教学反思13在备课时,我原本以为这是一节比较简单的内容,四年级时学生就学习了整数以及小数的运用运算定律进行简便运算,而此节课只是将这些运算定律迁移到分数的加减运算当中。但是在今天课堂上却出现了很多波折。
课始,我从复习整数及小数加减法的运算定律及应用入手的,想让学生能从复习中回忆旧知,为学生学习新知做好铺垫。我先出示三道题:①25+36=36+25 ②(17+28)+72=17+(28+72)④(0.5+1.6)+8.4=0.5+(1.6+8.4)请学生抢答,然后说出简算的依据。但我发现,很多同学能用字母把运算定律表示出来,就是用语言表达不了。我想,可能是平时的语言训练不够,在教学过程当中,尽量让学生多说,鼓励说,提示说。开放性的教学对开发学生的聪明才智和创造潜能,切实有效地调动学生的积极性,使学生正真成曾学习的主人并获得全面发展有着重要意义。本公式复习完后,我给学生抛出了一个问题:如果这些字母是表示分数,这些定律还适合吗?接下来由学生自主举例证明。学生积极性很高,但我发现很多同学都是直接从左边等于右边再计算。她们完全不知道怎样是证明。最后,我只好引导大家一起证明加法交换律在分数的计算中适合,并说明证明的方法,然后再放手让学生去做。曾记得这样一句话“今天的教是为了明天的不教”,只有基础牢固了,学习方法到位了,才能更大地培养学生的学习能力,促进学生更好地发展。
另外,虽然题目设计有层次,但出题样式可以更多。在现在的计算当中,不一定每一个题目都能进行简便运算,而且根据很多学生平时计算习惯来看,他们宁愿按部就班地计算也不去观察怎样计算可以更简便。所以,在平时的教学当中,多引导学生认真审题,能简算的就简算,这样逐步培养数感,提高计算速度及正确率。
《运算定律》教学反思14“动态生成”是新课程改革的核心理念之一,它要求从生命的高度用动态生成的观点看待课堂教学。正如叶澜教授在《让课堂焕发出生命活力》中说的:“课堂教学应被看作师生人生中的一段重要的生命经历……”因此,教师在课堂教学中不是机械的执行预设方案,而是注重学生的发展,突出学生在课堂上的能动性、创造性和差异性,尊重学生的独立人格,在课堂特定的生态环境中,根据师生、生生互动的情况,顺着学生的思路,因势利导地组织适合学生参与的、自主创新的教学活动。师生平等的对话,互相尊重,让学生的真实想法得以充分的暴露,最大程度的映出学生学习的意愿,擦出思维的火花。
正如我在教学《加法结合律》一课时,不管是多数学生的想法,还是个别学生的“怪论”,我都加以重视,给学生们自主和张扬个性的机会,让真实的动态生成的课堂演绎着学生们的异常的精彩!
当学生们已经掌握了加法结合律并能运用定律解决问题了,我开始让学生们看书质疑。这时,一名学生说:“老师,我觉得书上用字母表示的加法结合律:(a+b)+c=a+(b+c)等号左边(a+b)+c可以写成a+b+c,本来就先算a+b根本不用加括号的。”这一席话马上引起了全班的赞同:“对呀,自左到右算a+b就行了!”教了这些年学时时提醒学生记住定律的字母表达式,还从来没有一个学生对书上的运算定律的字母表达式提出异议的。新课改赋予了学生们更多挑战权威的勇气,给予学生们更多创造、思考的灵气。那么我一定要更加关注课堂的这种动态的形成,让学生占有主体学习地位,让我的课堂更富有生命的活力。所以我已经学会了灵活机智的调整自己的教学过程,把问题再抛给学生,尽量放手让学生们自己提出问题、共同探讨、再解决问题,真正使学生成为学习的主人。“那你们觉得该怎样表示加法结合律呢?”我赶紧反问到。生:“a+b+c=a+(b+c)还可以a+b+c=a+(b+c)=b+(a+c)。”我不禁佩服这个学生的精彩发言了。“这样一来,算式中还运用了什么定律?”“加法交换律!”同学异口同声。“怎样用文字表述呢?”“三个数相加,把其中任意两个数先相加,再加第三个数,和不变。”说的多好啊,不是象书上说的“前两个”,也不是“后两个”,而是不管先加哪两个都行。“我还觉得不止三个数,更多也可以,几个数相加,先把先把其中一些数相加,再和剩下的数相加,和不变。”“很好!大家很有发现的眼睛和思考的头脑。”我赶紧给学生们以鼓励,让他们沉浸在充满成就感的快乐之中……
是啊,当我们把教学看作是师生双方共同探讨新知、课程内容持续生成的时候,一节课究竟是怎样的过程,已经不是我们教师能够在备课方案的预先设计中能够把握在手了。它需要教师在课程预先设计的基础上,循着学生思维的起伏、情感的波澜随时地调整教学环节,动态地生成学习内容,展示课堂教学真实性的精彩。随后,在乘法交换律和乘法分配的学习中,学生们都学会了安自己的意愿和思考总结自己的定律。象除了书上的(a+b)×c=a×c+b×c,还总结出(a-b)×c=a×c-b×c和a×c+b×c+c=(a+b+1)×c、a×c-b×c-c=(a-b-1)×c等等。由此看来,尊重学生的学习需求,尊重学生们的想法,放飞思维的翅膀,让学生在获取知识的同时,产生自己的学习经验,获得丰富的情感体验,那么我们将会欣赏到学生们演绎的缤纷精彩!
《运算定律》教学反思15《整数加法运算定律推广到小数》一课的教学目标是:通过有限个例证明让学生理解整数的运算定律在小数运算中同样适用,能根据特点正确应用加法的运算定律进行小数的简便运算,培养学生的计算技能。本课的教学设计朴实,概括为以下几点:
1、准确定位,提高课堂效率。本班学生对整数加法的交换律、结合律,及减法的性质已熟练掌握,并能正确运用于加、减简便计算,根据这一认知和技能水平,教学中不以复习铺垫旧知来实现知识迁移,而直截了当引放新课的情境,提高了40分钟的课堂效率。
2、实现情境创设激发学生学习新知识的愿望。教学情境是直接为教学目标,教学内容服务的,是学生掌握知识、形成能力、发展心理品质的环境。通过童话故事的情境导入,充分激发学生学习新知的欲望,使学生自觉地进行小数加减简便算法的探索活动,融入新知识的学习中。
3、调动学生已有的生活知识经验,构建数学模型。结合学生原来的生活经验,大胆放手,给学生思考的空间,成为数学学习的主人。在学生独立自行计算,发展学生的个性的基础上,再让学生从不同的算法中比较、悟出整数加法定律在小数计算中同样适用。通过情境中特设计的两道都能用定律进行简便计算的例题,使学生在有限个例证中证实了初步构建的数学模型,懂得能否凑成整数是判断小数加减算式能不能进行简便计算的依据。